

Fan/Blower Efficiency Evaluation

Avista's approach

About Avista

- Investor-owned utility involved in energy production, transmission and distribution
- 418,000 electricity customers (WA, ID)
- 382,000 natural gas customers (WA, ID, OR)
- 30,000 square miles of service territory
- Celebrating 135 years of service

Andrew Paul Bio

- 13+ years in Energy Efficiency
- BSME, Washington State University
- MSCE, University of Washington
- MBA, Gonzaga
- PE (ME & EE) WA, ID, and CA
- Certified Energy Manager (CEM)
- Certified Measurement & Verification Professional (CMVP)

AGENDA

- Avista DSM Overview
- Two pathways for rebates/incentives
- Site-Specific projects intro
- Site-Specific Project example types
- Site-Specific projects process
- FEI Intro
- Q & A

About Avista Demand Side Management (DSM) i.e., why we do it

- DSM Tariff Rider provides approx. \$30M in annual funding for energy efficiency programs
- Reduction of approximately 10% of retail loads in recent years, or about 120 aMW or two small/medium generating stations.
- Must meet state-mandated energy reduction targets.
- Become a trusted energy partner with our customers and help them meet/exceed energy/cost carbon reduction goals in the form of both expertise and monetary incentives.

2 Pathways for Possible Avista rebates/incentives specific to fans/blowers (Prescriptive & Site-Specific)

- Prescriptive (PSC)
 - https://www.myavista.com/energy-savings/energy-savingprograms-services-for-your-business/rebates-washington
 - Rebate \$ given upon the purchase of energy efficient equipment. This is more of a "cookie cutter" approach for both common and proven efficiency upgrades.
 - Relatively simple and fast process for Avista customers.
 - Refer to program eligibility and guidelines.

Prescriptive rebates/incentives specific to fans/blowers

- Prescriptive
 - HVAC Fan VFD (retrofit ONLY)
 - Will be discontinued for 2025

Table A – Fan or Pump Application Codes

CODE	APPLICATION	CODE	APPLICATION
SFA	SUPPLY FAN OR SUPPLY AIR HANDLER	FWP	BOILER FEED WATER PUMP
SFP	SUPPLY FAN ON VAV PACKAGED OR ROOFTOP HVAC UNIT	СТР	COOLING TOWER PUMP
RFA	RETURN FAN OF RETURN AIR HANDLER	CHWP	CHILLED WATER PUMP
RFP	RETURN FAN ON VAV PACKAGED OR ROOFTOP HVAC UNIT	COWP	CONDENSING WATER PUMP
BEF	BUILDING EXHAUST FAN	OTHER	PLEASE SPECIFY IN TABLE C

Table B – VFD Incentive per HP of Designed Primary Motor Load

TYPE OF VFD	MAXIMUM \$ PER HP
VFD FANS	\$200
VFD COOLING PUMP ONLY	\$200
VFD HEATING PUMP ONLY OR COMBINED HEATING AND COOLING PUMP	\$200

AVISTA Site-Site Specific Projects

- Eligibility
 - Must be and Avista electric customer
 - Must initiate the project with Avista prior to the purchase of any equipment!
 Contact your friendly and knowledgeable Avista Account Executive!!!
 - If you don't know your Avista AE…

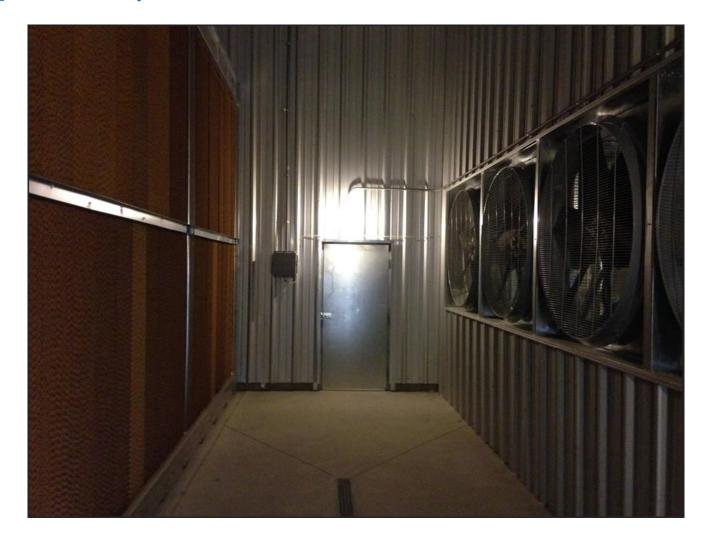
https://www.myavista.com/energy-savings/energy-saving-programs-services-for-your-business/get-personalized-help

AVISTA Site-Site Specific Projects, cont'd

- Project must meet our SPB requirements (currently between 0 and 15 years).
- Potential (electric) incentive is \$0.26/kWh saved up to 70% of the eligible project cost (\$0.23/kWh in ID).
- Most projects must follow a strict evaluation, measurement, and verification (EM&V)
 protocol. Details and requirements may vary among projects, most will involve
 IPMVP Option B.
- New construction/end-of-life (incremental cost) or full retrofit.

Site-Specific rebates/incentives specific to fans/blowers

- Again, sometimes referred to as "custom".
- HVAC (typically) retrofit only (2025). WA Energy Code 2021 C403.2.4 requires VFD on all HVAC fans >=5.0HP (2018 code was 7.5HP) and does NOT apply to refrigeration systems.
- Will likely require a post EEM measurement & verification (M&V).



Some Project Examples for Site-Specific HVAC

- Bolt-on VFDs probably the most common EEM (again, retrofit only).
- Net HP reduction reduced CFM demand, system modification resulting in reduced SP, etc.
- Filter MERV rating modifications (maybe).
- Evaporative cooling to replace mechanical cooling in favorable OSA conditions. This can (and should) be used in conjunction with rpm control and space/environmental conditions.
- Etc.

Evaporative cooling/fan wall example (although this example would be considered "process")

Non-HVAC Applications - Specific Examples

- Commercial
 - Building supply & exhaust (again, retrofit add-ons only)
 - Parking garage ventilation
 - Destratification, LSHV (HVAC? Sort of)
- Industrial Process (NC or retrofit)
 - Combustion air & Exhaust
 - Dust collection
 - General Manufacturing
 - Product drying
 - Material conveyance
 - Etc.

Direct Drive vs Belt Drive

Direct Drive

• Belt Drive

EEM: VFD Project Evaluations (fixed-speed BASELINE)

- Will typically involve spot power measurements and a data monitoring (length of time will vary).
- Baseline usage will be calculated at follows:

$$kW = \frac{V * A * \sqrt{3} * pf}{1000}$$

If...I must estimate...

$$kW = \frac{\%mtr \ load*nameplate \ HP*0.746}{\eta_{mtr}*\eta_{drive}}$$

or by using the familiar fluid-to-power equation (if only fan data is known)...

$$BHP = \frac{cfm * inwg}{6356 * \eta_{fan}}$$

 Typically, I estimate 80% motor load, 90% for the motor efficiency, approx. 50% fan eff. for small fans, 75% for large fans (ASHRAE, or use mfgr. fan performance data if available), and drive eff. depends on the wire-to-air drive components. Time permitting, I will walk you through a fan performance table at the end of this presentation.

EEM: VFD PRELIMINARY Project Evaluations (fixed-speed retrofits)

Upgrade estimate using affinity laws:

$$HP_2 = HP_1 \left(\frac{RPM_2}{RPM_1}\right)^{2.6}$$

- Note: An affinity exponent of 2.6 is used instead of 3 to more accurately include system compound inefficiencies (this will vary among organizations, usually ranging between 2.2 and 2.7).
- · Adjustments for air density, temperature, etc.

	Fan/Blower CFM, Velocity, and Energy Analysis										
Fan Motor Measured Data											
Motor HP	НР	200									
Motor Voltage	V	480									
	A	223	LINGOLN & TEF CENERONS								
Motor Amperage Motor Efficiency	%	93.6%	A.C. MOTOR								
Motor Power Factor	%	85%	est SINGLE HOLLOW								
Motor Power (electric)	kW	157.59	SINGLE VOLTAGE MOTOR SUITABLE FOR 1/2 PART WINDING OR 1/2 PART WINDING OR 1/2 FRAME VOLTS WOLTS								
Motor Fower (Electric)	KVV	137.39									
Fan Brake kW	BkW	147.5	CONCINT								
Fan Brake HP	ВНР	197.7	CONNECTION INCOMMENT								
Motor Speed	RPM	1780	ACROSS THE LITTLE DESIGNAL IN TIME								
Fan Speed	RPM	818	AMECTION RISE RISE CONTINUE CO								
System Data	1111111		NOM ER. 94 SNEWA								
Duct Type (Round? Rectangular?, etc.)		Round	NOM ESF. 94 SMEMA SEF. 98 3 UNCOLN MIN EFF								
Duct Size	in	36	SERIAL								
Duct Size	in		IF 4517A1								
Duct Size (Round)	ft ²	7.07	ALCTRIC TO CHIVECAND ONIC								
		The second second	SHVELAND DAVI								
Flow Rate (Clarke Perf. Tables MH 90*)	CFM	32868									
	CFM FPM	32868 4650									
Flow Rate (Clarke Perf. Tables MH 90*)	177.77		4000 fpm minimum for particle removal								
Flow Rate (Clarke Perf. Tables MH 90*) Air Velocity	FPM	4650									
Flow Rate (Clarke Perf. Tables MH 90*) Air Velocity Desired Velocity	FPM FPM	4650 4000	4000 fpm minimum for particle removal								
Flow Rate (Clarke Perf. Tables MH 90*) Air Velocity Desired Velocity Velocity Reduction Ratio	FPM FPM	4650 4000	4000 fpm minimum for particle removal Note: This approximately agrees with post-EEM panel								
Flow Rate (Clarke Perf. Tables MH 90*) Air Velocity Desired Velocity Velocity Reduction Ratio	FPM FPM	4650 4000	4000 fpm minimum for particle removal Note: This approximately agrees with post-EEM panel								
Flow Rate (Clarke Perf. Tables MH 90*) Air Velocity Desired Velocity Velocity Reduction Ratio	FPM FPM	4650 4000 86.0%	4000 fpm minimum for particle removal Note: This approximately agrees with post-EEM panel reading of 55 Hz								
Flow Rate (Clarke Perf. Tables MH 90*) Air Velocity Desired Velocity Velocity Reduction Ratio Energy Savings Analysis VFD Affinity Exponent Proposed Flow Rate Proposed Motor Power	FPM FPM pct	4650 4000 86.0%	4000 fpm minimum for particle removal Note: This approximately agrees with post-EEM panel reading of 55 Hz * Clarke Performance Tables for MH-90 centrifugal fan with								
Flow Rate (Clarke Perf. Tables MH 90*) Air Velocity Desired Velocity Velocity Reduction Ratio Energy Savings Analysis VFD Affinity Exponent Proposed Flow Rate	FPM FPM pct	4650 4000 86.0% 2.6 28274	4000 fpm minimum for particle removal Note: This approximately agrees with post-EEM panel reading of 55 Hz * Clarke Performance Tables for MH-90 centrifugal fan with								
Flow Rate (Clarke Perf. Tables MH 90*) Air Velocity Desired Velocity Velocity Reduction Ratio Energy Savings Analysis VFD Affinity Exponent Proposed Flow Rate Proposed Motor Power	FPM FPM pct	4650 4000 86.0% 2.6 28274 106.5	4000 fpm minimum for particle removal Note: This approximately agrees with post-EEM panel reading of 55 Hz * Clarke Performance Tables for MH-90 centrifugal fan with								
Flow Rate (Clarke Perf. Tables MH 90*) Air Velocity Desired Velocity Velocity Reduction Ratio Energy Savings Analysis VFD Affinity Exponent Proposed Flow Rate Proposed Motor Power Annual Hours of Operation	FPM FPM pct CFM kW hr	4650 4000 86.0% 2.6 28274 106.5 2080	4000 fpm minimum for particle removal Note: This approximately agrees with post-EEM panel reading of 55 Hz * Clarke Performance Tables for MH-90 centrifugal fan with								
Flow Rate (Clarke Perf. Tables MH 90*) Air Velocity Desired Velocity Velocity Reduction Ratio Energy Savings Analysis VFD Affinity Exponent Proposed Flow Rate Proposed Motor Power Annual Hours of Operation Baseline Energy Usage	FPM FPM pct CFM kW hr kWh	4650 4000 86.0% 2.6 28274 106.5 2080 327784.9	4000 fpm minimum for particle removal Note: This approximately agrees with post-EEM panel reading of 55 Hz * Clarke Performance Tables for MH-90 centrifugal fan with								

BE CAREFUL WHEN RETROFITTING BELT DRIVES!!!

- Check with manufacturer specifications (both the belt and the fan/driver).
- V-belt speed should run between 1000 and 5000 ft/min. Outside of this range may result in equipment damage (premature belt wear, bearing damage, sheave damage, or worse). Easily calculated with sheave ratios.
- Most literature says 4000 ft/min is ideal for V-belts, most cross-sections.
- Remember, even a slight speed reduction will result in a significant energy reduction.

Site-Specific Projects Closeout...

- These types of project will be subject to a post-installation inspection and will likely be M&V'd.
- Length of the performance period may vary depending on the application.
- Project will be re-evaluated at the end of the performance period and any necessary adjustments will be made (weather, production metrics, etc.)

Site-Specific Projects Closeout cont'd

- Most modern VFDs have the data collection capability needed to perform the final evaluation...
- Most will report avg running Hz, avg running kW, cumulative kWh (sometimes cannot be reset), total run-hours, etc. I can work with any two of these. Otherwise, the kWh will be data- logged/extrapolated in the traditional way.
- Final EEM kWh usage is compared to the original baseline and...
- Final incentive payment (if any) is usually sent within two weeks.

The Future? Fan Energy Index (FEI)

- What is it and does it replace Fan Energy Grade (FEG)?
- The (very) short answer is that it is basically a comparison of the energy usage between a specified standalone fan/array and a conceptual "reference fan" at a certain operating point (cfm, and pressure) as calculated per AMCA 208. And yes, it does replace the former FEG.
- Operating point: TP or SP depending on fan/impeller type, air density, cfm.
- Avista will likely adopt a minimum baseline FEI requirement of 1.0 in accordance with ASHRAE 90.1 for site-specific projects. The compliant range for fans AND arrays is FEI >=1.0, 0.95 for VAV systems in the United States (ceiling fans are exempt along with embedded and other fans under certain criteria).
- Not difficult to work with, however there are some technical and regulatory nuances here (I can go into if needed).

QUESTIONS?

THANK YOU!!!

- Andy.paul@avistacorp.com
- Andrew.paul87@gmail.com
- 509-495-2025
- linkedin.com/in/apaul87

PERFORMANCE TABLES - No. 90 - No. 100 - No. 110

MH TYPE

INLET DIAMETER - 37" O.D.

WHEEL DIAMETER --- 64 3/8"

WHEEL CIRCUMFERENCE - 16.85 FT.

		4" SP		5" SP		6" SP		7" SP		8" SP		10" SP		12" SP		14" SP		16"	SP	18"	SP	20"	SP	22"	SP	24	24" SP	
CFM	ov	RPM		RPM	BHP	RPM	BHP	RPM	ВНР	RPM	ВНР	RPM		RPM	ВНР	RPM	ВНР	RPM	ВНР	RPM	ВНР	RPM	внР	RPM	8HP	RPM	BHP	
8964 10458 11952 13446		409	9.82 10.92 12.33	458	13.98 15.35	502	18.78													:							:	
14940 16434 17928 19422	2200 2400	432 439	13.86 15.51 17.25 19.11	474 481	17.11 19.05 21.05 23.19	512 518	20. 45 22. 59 24. 92 27. 30	547 554	24. 18 26. 21 28. 79 31. 51	581 587	_		41.41 44.29	711	53.99	766	63.86	i : :			N	C		y	U	:		
20916 22410 23964 25398	2800 3000 3200 3400	462 469	21.10 23.22 25.46 27.83	503 510	25.44 27.84 30.37 33.08	532 540 547 555	29.85 32.53 35.33 38.31	567 574 581 589	34.28 37.26 40.33 43.58	600 607 614 621		659 666 673 680	55.49	720 727		771 777	67.89 71.67 76.35 81.59	822 824	78.54 83.08 87.38 92.65	872	94.55 99.55 104.44		111.87 117.27		123.66 130.45	1004	143.17	
26892 28386 29880 31374	3600 3800 4000 4200	493 501	30.30 32.93 35.72 38.64	526 533 541 549	35.92 38.88 41.96 45.20	570	41.42 44.74 48.22 51.76	597 604 612 620	46.98 50.55 54.34 58.25	636 644	52.56 56.45 60.50 64.73		68.31 72.85	747 754	75.27 80.29 85.49 90.80	796 804	87.05 92.32 98.15 104.13	843 849	98.62 104.80 110.92 117.33	886 893	110.33 117.04 123.93 130.95	928 934	122.82 129.43 136.86 144.48	967 973	142.52	1008	150.26 156.33 163.59 171.84	
32868 34362 35856 37350	4400 4600 4800 5000	525 534	41.78 45.14 48.71 52.52	557 565 573 581	48.63 52.24 56.05 60.04	594 601 609 617	55. 49 59. 40 63. 50 67. 81	627 635 643 651	62.40 66.60 71.01 75.59	667	69.15 73.80 78.53 83.42	725 732	82.70 87.78 93.33 98.92	777 784	96.29 102.08 108.11 114.20	825 833	110.10 116.49 122.98 129.74	870 878	124, 05 130, 97 138, 02 145, 33	913 920	137.95 145.48 153.25 160.93	954 961	152.36 160.03 168.39 176.93	993 1000	166. 45 175. 17 183. 52 192. 70	1030	180.76 189.88 199.39	
38844 40338 41832 43326	5200 5400 5600 5800	552 •	56.55	590 599 608 617	64.32 68.85 73.63 78.67	625 633 642 651	72.31 77.03 82.05 87.30	658 667 675 683	85. 43 90. 67	705	88. 53 93. 83 99. 39 105. 18	755 763	104. 80 110. 72 116. 89 123. 29	808 815	120.76 127.43 134.37 141.47	856 863	136. 78 143. 89 151. 55 159. 27	901 908	152.89 160.68 168.78 176.87	942 950	169.17 177.40 186.01 195.00	982 990	185.50 194.38 203.54 213.02	1021	202.00 211.46 221.11 231.18			
44820 46314 47808	6000 6200 6400		•	626 635 645	89.58	660 669 678	92.88 98.69 104.88	700	101,92 107,95 114,39	730	111.19 117.47 124.04	786	129.88 136.75 143.86	839	148.64 156.12 163.85	886	167.30 175.55 183.83	931	185.73 194.57 203.71	973	204. 20 213. 45 223. 38	1013	222, 71 232, 78 242, 99					

